Penguard Tie Coat 100 ## **Product description** This is a two component, polyamide cured, high molecular weight epoxy coating. Specially designed as holding primer, sealer and as a tie coat on top of inorganic zinc silicate primers, galvanized steel and thermally sprayed zinc. To be used as primer in a complete system in atmospheric environments. ### **Scope** The Application Guide offers product details and recommended practices for the use of the product. The data and information provided are not definite requirements. They are guidelines to assist with efficient and safe use, and optimum service of the product. Adherence to the guidelines does not relieve the applicator of responsibility for ensuring that the work meets specification requirements. Jotuns liability is in accordance with general product liability rules. The Application Guide (AG) must be read in conjunction with the relevant specification, Technical Data Sheet (TDS) and Safety Data Sheet (SDS) for all the products used as part of the coating system. #### Referred standards Reference is generally made to ISO Standards. When using standards from other regions it is recommended to reference only one corresponding standard for the substrate being treated. ## **Surface preparation** The required quality of surface preparation can vary depending on the area of use, expected durability and if applicable, project specification. When preparing new surfaces, maintaining already coated surfaces or aged coatings it is necessary to remove all contamination that can interfere with coating adhesion, and prepare a sound substrate for the subsequent product. Inspect the surface for hydrocarbon and other contamination and if present, remove with an alkaline detergent. Agitate the surface to activate the cleaner and before it dries, wash the treated area using fresh water. Paint solvents (thinners) shall not be used for general degreasing or preparation of the surface for painting due to the risk of spreading dissolved hydrocarbon contamination. Paint thinners can be used to treat small localized areas of contamination such as marks from marker pens. Use clean, white cotton cloths that are turned and replaced often. Do not bundle used solvent saturated cloths. Place used cloths into water. #### **Galvanised steel** #### Abrasive blast cleaning After removal of excess zinc and surface defects the area to be coated shall be degreased to ISO 12944-4, Part 6.2.4 Alkaline Cleaning. The galvanised surface shall be sweep blast-cleaned with the nozzle angle at $45-60^{\circ}$ from perpendicular at reduced nozzle pressure to create a sharp and angular surface profile using approved non-metallic abrasive media. As a guide, a surface profile $25-55~\mu m$, grade Fine G; Ry5 (ISO 8503-2) should be achieved. Care must be exercised when sweep blasting. The zinc coating thickness should be reduced as little as possible, preferably not more than $10~\mu m$. Smaller areas can be lightly treated with abrasive paper. Finished surfaces shall be dull, profiled and show no areas of shiny metal. Do not handle the prepared surface with bare hands. #### **Hand and Power Tool Cleaning** Date of issue: 7 January 2020 Page: 1/7 After removal of excess zinc and surface defects the area to be coated shall be degreased with an alkaline detergent, washed by Low-Pressure Water Cleaning (LPWC) to a grade corresponding to the description of Wa 1 (ISO 8501-4) or higher standard and the surface abraded using mechanical or hand sanding methods using non-metallic abrasives or bonded fibre abrasive pads to remove all polish and to impart a scratch pattern to the surface. Do not use high speed rotational sanders. #### Water jetting Inspect the surface for process residues, hydrocarbon contamination and corrosion by products. If present, remove with an alkaline detergent. Agitate the surface to activate the detergent and before it dries, wash the treated area by Low-Pressure Water Cleaning (LPWC) to a grade corresponding to the description of Wa 1 (ISO 8501-4) or higher standard using fresh water. #### **Coated surfaces** #### **Inorganic zinc silicates** This product can be applied on top of an inorganic zinc ethyl silicate, provided the primer is cured and the product is applied using a mist-coat technique. ## **Application** #### Acceptable environmental conditions - before and during application Before application, test the atmospheric conditions in the vicinity of the substrate for the dew formation according to ISO 8502-4. Air temperature 10 - 40 °C Substrate temperature 10 - 60 °C Relative Humidity (RH) 10 - 85 % The following restrictions must be observed: - Only apply the coating when the substrate temperature is at least 3 °C (5 °F) above the dew point - Do not apply the coating if the substrate is wet or likely to become wet - Do not apply the coating if the weather is clearly deteriorating or unfavourable for application or curing - · Do not apply the coating in high wind conditions #### **Product mixing** #### Product mixing ratio (by volume) Penguard Tie Coat 100 Comp A 2 part(s) Penguard Tie Coat 100 Comp B 1 part(s) Date of issue: 7 January 2020 Page: 2/7 #### **Induction time and Pot life** | Paint temperature | 23 °C | |-------------------|--------| | Induction time | 30 min | | Pot life | 4 h | The temperature of base and curing agent is recommended to be 18 °C or higher when the product is mixed. #### **Thinner/Cleaning solvent** Thinner: Jotun Thinner No. 17 #### **Application data** #### **Spray application** #### **Airless Spray Equipment** Pump ratio (minimum): 32:1 Pressure at nozzle (minimum): 150 bar/2100 psi Nozzle tip (inch/1000): 15-19 Nozzle output (litres/minute): 0.9-1.5 Filters (mesh): 70 Several factors influence, and need to be observed to maintain the recommended pressure at the nozzle. Among factors causing pressure drop are: - extended hoses or hose bundles - extended hose whip-end line - small internal diameter hoses - high paint viscosity - large spray nozzle size - inadequate air capacity from compressor - incorrect or clogged filters # Film thickness per coat #### Typical recommended specification range Dry film thickness 25 - 50 μm Wet film thickness 60 - 120 μm Theoretical spreading rate 17 - 8.4 m^2/l Higher film thickness may be required to entirely seal porous substrates. $\label{lem:canbe} \mbox{Can be applied up to 25 \% higher than maximum specified film thickness without loss of technical properties.}$ Date of issue: 7 January 2020 Page: 3/7 #### Film thickness measurement #### Wet film thickness (WFT) measurement and calculation To ensure correct film thickness, it is recommended to measure the wet film thickness continuously during application using a painter's wet film comb (ISO 2808 Method 1A). The measurements should be done as soon as possible after application. Fast drying paints may give incorrect (too low) readings resulting in excessive dry film thickness. For multi layer physically drying (resoluble) coating systems the wet film thickness comb may give too high readings resulting in too low dry film thickness of the intermediate and top coats. Use a wet-to-dry film calculation table (available on the Jotun Web site) to calculate the required wet film thickness per coat. #### Dry film thickness (DFT) measurement When the coating has cured to hard dry state the dry film thickness can be checked to SSPC PA 2 or equivalent standard using statistical sampling to verify the actual dry film thickness. Measurement and control of the WFT and DFT on welds is done by measuring adjacent to and no further than 15 mm from the weld. #### **Ventilation** Sufficient ventilation is very important to ensure proper drying/curing of the film. #### **Drying process** Do not attempt to speed up the curing process by blowing hot air on to the wet coating film as this may lead to skin drying/curing, entrapped solvents and consequently solvent blistering and inferior corrosion protection. #### **Coating loss** The consumption of paint should be controlled carefully, with thorough planning and a practical approach to reducing loss. Application of liquid coatings will result in some material loss. Understanding the ways that coating can be lost during the application process, and making appropriate changes, can help reducing material loss. Some of the factors that can influence the loss of coating material are: - type of spray gun/unit used - air pressure used for airless pump or for atomization - orifice size of the spray tip or nozzle - fan width of the spray tip or nozzle - the amount of thinner added - the distance between spray gun and substrate - the profile or surface roughness of the substrate. Higher profiles will lead to a higher "dead volume" - the shape of the substrate target - environmental conditions such as wind and air temperature # **Drying and Curing time** | Substrate temperature | 5 °C | 10 °C | 23 °C | 40 °C | |---------------------------|------|-------|-------|--------| | Surface (touch) dry | 5 h | 2 h | 1 h | 30 min | | Walk-on-dry | 24 h | 14 h | 6.5 h | 3 h | | Dry to over coat, minimum | 24 h | 18 h | 6 h | 3 h | | Dried/cured for service | 16 d | 14 d | 7 d | 3 d | Drying and curing times are determined under controlled temperatures and relative humidity below 85 %, and at average of the DFT range for the product. Surface (touch) dry: The state of drying when slight pressure with a finger does not leave an imprint or reveal tackiness. Date of issue: 7 January 2020 Page: 4/7 Walk-on-dry: Minimum time before the coating can tolerate normal foot traffic without permanent marks, imprints or other physical damage. Dry to over coat, minimum: The recommended shortest time before the next coat can be applied. Dried/cured for service: Minimum time before the coating can be permanently exposed to the intended environment/medium. ## Maximum over coating intervals Maximum time before thorough surface preparation is required. The surface must be clean and dry and suitable for over coating. Inspect the surface for chalking and other contamination and if present, remove with an alkaline detergent. Agitate the surface to activate the cleaner and before it dries, wash the treated area by low-pressure water cleaning using fresh water. If maximum over coating interval is exceeded the surface should in addition be carefully roughened to ensure good inter coat adhesion. The referred intervals relate specifically to over coating with Jotun Performance Coating products. #### Areas for atmospheric exposure | Average temperature during drying/curing | 10 °C | 23 °C | 40 °C | |--|-------|-------|-------| | Itself | 3 mth | 3 mth | 2 mth | | acrylic | 7 d | 5 d | 1 d | | ероху | 3 mth | 3 mth | 2 mth | | epoxy mastic | 3 mth | 3 mth | 3 mth | | epoxy Passive Fire Protection | 21 d | 21 d | 14 d | #### Other conditions that can affect drying / curing / over coating #### Repair of coating system #### Damages to the coating layers: Prepare the area through sandpapering or grinding, followed by thorough cleaning/vacuuming. When the surface is clean and dry the coating may be over coated by itself or by another product, ref. original specification. Always observe the maximum over coating intervals. If the maximum over coating interval is exceeded the surface should be carefully roughened in order to ensure good intercoat adhesion. #### Damages exposing bare substrate: Remove all rust, loose paint, grease or other contaminants by spot blasting, mechanical grinding, water and/or solvent washing. Feather edges and roughen the overlap zone of surrounding intact coating. Apply the coating system specified for repair. #### Repair of damaged areas Sags and runs can be caused by too high wet film thickness, too much thinner added or the spray gun used too close to the surface. Repair by using a paint brush to smooth the film when still wet. Sand down to a rough, even surface and re-coat if the coating is cured. Orange peel can be caused by poor flow/levelling properties of the paint, poor atomization of the paint, thinner evaporating too fast or the spray gun held too close to the surface. This can be rectified by abrading the surface and applying an additional coat after having adjusted the application properties or the application technique. Dry spray can be caused by poor atomization of the paint, spray gun held too far from the surface, high air temperature, thinner evaporating too fast or coating applied in windy conditions. Sand down to a rough even surface and re-coat. Date of issue: 7 January 2020 Page: 5/7 This Application Guide supersedes those previously issued. The Application Guide (AG) must be read in conjunction with the relevant specification, Technical Data Sheet (TDS) and Safety Data Sheet (SDS) for all the products used as part of the coating system. For your nearest local Jotun office, please visit our website at www.jotun.com. Pinholes can be caused by entrapped solvents in the film or by incorrect application technique. Pinholes can be repaired as per procedure for damages to the coating layer or to the substrate, ref. above. ## Quality assurance The following information is the minimum required. The specification may have additional requirements. - Confirm that all welding and other metal work has been completed before commencing pre-treatment and surface preparation - Confirm that installed ventilation is balanced and has the capacity to deliver and maintain the RAQ - Confirm that the required surface preparation standard has been achieved and is held prior to coating application - Confirm that the climatic conditions are within recommendations in the AG, and are held during the application - Confirm that the required number of stripe coats have been applied - Confirm that each coat meets the DFT requirements in the specification - Confirm that the coating has not been adversely affected by rain or other factors during curing - Observe that adequate coverage has been achieved on corners, crevices, edges and surfaces where the spray gun cannot be positioned so that its spray impinges on the surface at 90° angle - Observe that the coating is free from defects, discontinuities, insects, abrasive media and other contamination - Observe that the coating is free from misses, sags, runs, wrinkles, fat edges, mud cracking, blistering, obvious pinholes, excessive dry spray, heavy brush marks and excessive film build - Observe that the uniformity and colour are satisfactory All noted defects shall be fully repaired to conform to the coating specification. #### **Caution** This product is for professional use only. The applicators and operators shall be trained, experienced and have the capability and equipment to mix/stir and apply the coatings correctly and according to Jotun's technical documentation. Applicators and operators shall use appropriate personal protection equipment when using this product. This guideline is given based on the current knowledge of the product. Any suggested deviation to suit the site conditions shall be forwarded to the responsible Jotun representative for approval before commencing the work. For further advice please contact your local Jotun office. #### **Health and safety** Please observe the precautionary notices displayed on the container. Use under well ventilated conditions. Do not inhale spray mist. Avoid skin contact. Spillage on the skin should immediately be removed with suitable cleanser, soap and water. Eyes should be well flushed with water and medical attention sought immediately. #### **Accuracy of information** Always refer to and use the current (last issued) version of the TDS, SDS and if available, the AG for this product. Always refer to and use the current (last issued) version of all International and Local Authority Standards referred to in the TDS, AG & SDS for this product. #### Colour variation Some coatings used as the final coat may fade and chalk in time when exposed to sunlight and weathering effects. Coatings designed for high temperature service can undergo colour changes without affecting performance. Some slight colour variation can occur from batch to batch. When long term colour and gloss retention is required, please seek advice from your local Jotun office for assistance in selection of the most suitable top coat for the exposure conditions and durability requirements. #### **Reference to related documents** The Application Guide (AG) must be read in conjunction with the relevant specification, Technical Data Sheet (TDS) and Safety Data Sheet (SDS) for all the products used as part of the coating system. When applicable, refer to the separate application procedure for Jotun products that are approved to classification societies such as PSPC, IMO etc. Date of issue: 7 January 2020 Page: 6/7 ## Symbols and abbreviations min = minutes h = hours d = days °C = degree Celsius ° = unit of angle $\mu m = microns = micrometres$ g/I = grams per litre g/kg = grams per kilogram m²/I = square metres per litre mg/m² = milligrams per square metre psi = unit of pressure, pounds/inch² Bar = unit of pressure RH = Relative humidity (% RH) UV = Ultraviolet DFT = dry film thickness WFT = wet film thickness TDS = Technical Data Sheet AG = Application Guide SDS = Safety Data Sheet VOC = Volatile Organic Compound MCI = Jotun Multi Colour Industry (tinted colour) RAQ = Required air quantity PPE = Personal Protective Equipment EU = European Union UK = United Kingdom EPA = Environmental Protection Agency ISO = International Standards Organisation ASTM = American Society of Testing and Materials AS/NZS = Australian/New Zealand Standards NACE = National Association of Corrosion Engineers SSPC = The Society for Protective Coatings PSPC = Performance Standard for Protective Coatings IMO = International Maritime Organization ASFP = Association for Specialist Fire Protection ### **Disclaimer** The information in this document is given to the best of Jotun's knowledge, based on laboratory testing and practical experience. Jotun's products are considered as semi-finished goods and as such, products are often used under conditions beyond Jotun's control. Jotun cannot guarantee anything but the quality of the product itself. Minor product variations may be implemented in order to comply with local requirements. Jotun reserves the right to change the given data without further notice. Users should always consult Jotun for specific guidance on the general suitability of this product for their needs and specific application practices. If there is any inconsistency between different language issues of this document, the English (United Kingdom) version will prevail. Date of issue: 7 January 2020 Page: 7/7